

Copper-aluminium casting alloy AMBG alloy 1920

AMBG is a non-standardised sliding material, developed from the standardised wrought material AMB 1 = CuAl10Fe3Mn2, material no. CW306G. AMBG is corrosion resistant to seawater. It is also suitable for bearings at increased operating temperatures and in combination with MoS_2 lubricants.

// Composition (mass fraction in %), not standardised				
Си	Al	Fe	Ni	Mn
81.5 – 85.0	9.4 – 10.1	3.0 – 4.0	0.4 - 0.8	2.5 – 3.5
Pb	Si	Sn	Zn	Other
-	max. 0.04	-	max. 0.3	max. 0.3

// Strength properties at room temperature				
	(minimum values)			
Not standardised	R _m N/mm²	R _{p0.2} N/mm ²	A ₅ %	НВ
Sand casting	490	220	8	130
Centrifugal casting	590	250	12	130

at elevated temperatures (reference values)						
Temperature	°C	20	150	200	250	300
Tensile strength	R _m N/mm ²	700	670	655	635	550
0.2% limit	R _{p0.2} N/mm ²	235	235	250	270	260
Elongation	A ₅ %	28	29	32	42	43

// Strength properties

// Physical properties (reference values)
Density at 20°C	7.6 kg/dm³
Melting temperature/range	1040 – 1060 °C
Specific heat capacity at 20°C	0.452 J/g x °C
Thermal conductivity	0.34 W/cm °C
Electrical conductivity at 20°C	3 – 4 MS/m 5 – 7 % IACS
Electrical resistance at 20°C	0.25 - 0.33 Ω mm²/m
Coefficient of linear expansion from 20°C to 200°C	17 x 10 ⁻⁶ °C ⁻¹
Shrinkage	1.5 – 2 %
Young's modulus	118 KN/mm²
Permeability	< 1.4

// Dynamic strength values at room temperature (reference values)	
Bending fatigue strength $R_{\rm bw}$ at $10^{\rm 8}$ load cycles	- N/mm²
Notched impact energy (ISO - V/KV)	50 joules

Solid metals. Fine solutions.

Copper-aluminium casting alloy AMBG

alloy 1920

AMBG is a non-standardised sliding material, developed from the standardised wrought material AMB 1 = CuAl10Fe3Mn2, material no. CW306G. AMBG is corrosion resistant to seawater. It is also suitable for bearings at increased operating temperatures and in combination with MoS_2 lubricants.

Areas of application

AMBG is used for its good sliding properties for

- · Worm wheels
- Sliding parts
- Bearing bushes
- Roller bearing cages and bearing bushes for shock loads,
 e.g. in the roller tables of continuous casting plants and foundry machines

Machinability

Carbide tools are needed for turning and milling and sharp drill bits are needed for drilling and thread cutting. This results in machinability that is better than that of austenitic steel.

Shorter rolling and flowing chips are formed.

Relaxation annealing approx. 550 – 580°C

Soft soldering not recommendable

Brazing poor, fluxes containing

fluoride and chloride(type F – SH 1) silver solders are

advantageous

Welding good, both TIG, MIG and

manual electrode welding are possible. Suitable filler metal e.g. CuAl9Ni4Fe2Mn2 = CF310G or S-CuAl8Ni2

Galvanisability possible, good cleaning and

pretreatment necessary

ZOLLERN GmbH & Co. KG

Hitzkofer Straße 1
72517 SigmaringendorfLaucherthal
Germany
T +49 7571 70-984
F +49 7571 70-82984
zgm@zollern.com
www.zollern.com

