

Wrought copper-nickel-silicon alloy NSB-CrZr alloy 1117

80 joules

NSB-CrZr corresponds to different customer specifications. The material was specially developed for electrical engineering and is mainly used for rotor wedges / slot wedges in large generators.


		OLLERN brand		NSB-CrZr	
	(C18000	Ni 1.8-3.0	Si 0.4-0.8	≈ Cr 0.10-0.80)	
// National desigr	ations				
	USA			≈ C18000	

// Composition (not standardised)					
Си	Ni	Si	Cr	Zr	
Rest	1.6 – 2.5	0.5 - 0.8	0.05-0.10	0.15-0.20	
Other	Mn	Zn	Fe	Sn	
max. 0.3	max 0.1	max 0.2	max 0.2	max 0.2	
Mg	Al	Pb	P		
max 0.05	max 0.04	max 0.01	max 0.005		

// Strength properties at room temperature							
	(minimum values)						
[1] Customer specifications [2] Zollern values for rings	R _{p0.2} N/mm²	R _m N/mm²	A ₅ %	НВ			
[1] Profiles, bars	540	600	10	180			
[2] Forged pieces, rings	450	550	15	160			

// Physical properties	
Density at 20 °C	8.8 kg/dm³
Melting temperature/range	1040 – 1060°C
Coefficient of linear expansion	
from 20° to 200°C	16 x 10 ⁻⁶ °C ⁻¹
from 20° to 300°C	18 x 10 ⁻⁶ °C ⁻¹
Specific heat at 20°C	0.381 J/g x °C
Thermal conductivity at 20°C	1.51 W/cm x°C
Electr. conductivity at 20°C	18 - 23 MS/m 31 - 40 % IACS
Electr. resistance at 20°C	0.0435 - 0.05555 Ω mm²/m
Temperature coefficient of the electrical resistance (0 - 100°C)	0.0020 °C ⁻¹
Permeability	< 1.01
Young's modulus	130 KN/mm²
// Dynamic strength values at room temperature (reference values)	
Rotational bending fatigue strength R_{bw} at 20 x10 6 load cycles, 30% cold-formed	180 N/mm²

Notched impact energy (ISO - V/KV)

Wrought copper-nickel-silicon alloy NSB-CrZr

alloy 1117

NSB-CrZr corresponds to different customer specifications. The material was specially developed for electrical engineering and is mainly used for rotor wedges / slot wedges in large generators.

Areas of application

- Rotor wedges / slot wedges for generators
- · Short circuit rings for electric motors

Machinability

NSB-CrZr has good hot forming properties and can also be cold-formed well in the solution-annealed condition. NSB-CrZr behaves better during machining than pure copper. Flow chips do not form as long. The cutting index is approx. 30 where CuZn39Pb3 = 100.

Relaxation annealing 250 – 400°C

Soft annealing soft, solution-annealed

condition is achieved by annealing 750 – 880°C with subsequent water quenching

Soft soldering good

Brazing not recommended due

to softening

Welding not recommended due

to softening,

preheating is necessary

for large parts.
A filler material of the same type is not available

Surface treatment polishing and chemical

structuring are possible, as well as galvanic coatings

ZOLLERN GmbH & Co. KG

Hitzkofer Strasse 1
72517 SigmaringendorfLaucherthal
Germany
T +49 7571 70-984
F +49 7571 70-82984
zgm@zollern.com
www.zollern.com

